GradDock: rapid simulation and tailored ranking functions for peptide-MHC Class I docking
نویسندگان
چکیده
Motivation The identification of T-cell epitopes has many profound translational applications in the areas of transplantation, disease diagnosis, vaccine/therapeutic protein development and personalized immunotherapy. While data-driven methods have been widely used for the prediction of peptide binders with notable successes, the structural modeling of peptide binding to MHC molecules is crucial for understanding the underlying molecular mechanism of the immunological processes. Results We developed GradDock, a structure-based method for the rapid and accurate modeling of peptide binding to MHC Class I (pMHC-I). GradDock explicitly models diverse unbound peptides in vacuo and inserts them into the MHC-I groove through a steered gradient descent with a topological correction process. The simulation process yields diverse structural conformations including native-like peptides. We completely revised the Rosetta score terms and developed a new ranking function specifically for pMHC-I. Using the diverse peptides, a linear programming approach is applied to find the optimal weights for the individual Rosetta score terms. Our examination revealed that a refinement of the dihedral angles and a modification of the repulsion can dramatically improve the modeling quality. GradDock is five-times faster than a Rosetta-based docking approach for pMHC-I. We also demonstrate that the predictive capability of GradDock with the re-weighted Rosetta ranking function is consistently more accurate than the Rosetta-based method with the standard Rosetta score (approximately three-times better for a cross-docking set). Availability and implementation GradDock is freely available for academic purposes. The program and the ranking score weights for Rosetta are available at http://bel.kaist.ac.kr/research/GradDock. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.
منابع مشابه
Npgrj_ni_1257 1114..1122
Unusually long major histocompatibility complex (MHC) class I–restricted epitopes are important in immunity, but their ‘bulged’ conformation represents a potential obstacle to ab T cell receptor (TCR)–MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a TCR in complex with HLA-B*3508 presenting a pe...
متن کاملDirected Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway
Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...
متن کاملDesign of enhanced agonists through the use of a new virtual screening method: application to peptides that bind class I major histocompatibility complex (MHC) molecules.
A new screening procedure is described that uses docking calculations to design enhanced agonist peptides that bind to major histocompatibility complex (MHC) class I receptors. The screening process proceeds via single mutations of one amino acid at the positions that directly interact with the MHC receptor. The energetic and structural effects of these mutations have been studied using fragmen...
متن کاملTemplate-based scoring functions for visualizing biological insights of H-2Kb-peptide-TCR complexes
Major Histocompatibility Complex (MHC), peptide and T-Cell Receptor (TCR) play an essential role of adaptive immune responses. Many prediction servers are available for identification of peptides that bind to MHC class I molecules but often lack detailed interacting residues for analysing MHC-peptide-TCR interaction mechanisms. This study considers both the interface similarity and the interact...
متن کاملCritical role for the tapasin-docking site of TAP2 in the functional integrity of the MHC class I-peptide-loading complex.
The transporter associated with Ag processing (TAP) translocates antigenic peptides into the endoplasmic reticulum for binding onto MHC class I (MHC I) molecules. Tapasin organizes a peptide-loading complex (PLC) by recruiting MHC I and accessory chaperones to the N-terminal regions (N domains) of the TAP subunits TAP1 and TAP2. To investigate the function of the tapasin-docking sites of TAP in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2018